
INTRODUCTION TO LINUX

(The most interesting parts of the text at
http://www.doc.ic.ac.uk/~wjk/UnixIntro/)

ZAGREB 2011.

1

CONTENTS

1. About operating system 3
2. The UNIX filesystem and filesystem actions 6
3. Useful UNIX commands 13
4. Introduction to vi editor 24
5. Shells and system commands 27
Notice 32

2

1.1. Operating System

An operating system (OS) is a resource manager. It takes the form of a set of software routines that allow
users and application programs to access system resources (e.g. the CPU, memory, disks, modems, printers
network cards etc.) in a safe, efficient and abstract way.

For example, an OS ensures safe access to a printer by allowing only one application program to send data
directly to the printer at any one time. An OS encourages efficient use of the CPU by suspending programs
that are waiting for I/O operations to complete to make way for programs that can use the CPU more
productively. An OS also provides convenient abstractions (such as files rather than disk locations) which
isolate application programmers and users from the details of the underlying hardware.

The architecture of a typical operating system consists of the following:

1) The operating system kernel is in direct control of the underlying hardware. The kernel provides low-level
device, memory and processor management functions (e.g. dealing with interrupts from hardware devices,
sharing the processor among multiple programs, allocating memory for programs etc.)

2) Basic hardware-independent kernel services are exposed to higher-level programs through a library of
system calls (e.g. services to create a file, begin execution of a program, or open a logical network connection
to another computer).

3) Application programs (e.g. word processors, spreadsheets) and system utility programs (simple but useful
application programs that come with the operating system, e.g. programs which find text inside a group of
files) make use of system calls. Applications and system utilities are launched using a shell (a textual
command line interface) or a graphical user interface that provides direct user interaction.

Operating systems (and different flavours of the same operating system) can be distinguished from one another
by the system calls, system utilities and user interface they provide, as well as by the resource scheduling
policies implemented by the kernel.

1.2. A Brief History of UNIX

UNIX has been a popular OS for more than two decades because of its multi-user, multi-tasking environment,
stability, portability and powerful networking capabilities. What follows here is a simplified history of how
UNIX has developed (to get an idea for how complicated things really are, see the web site
http://www.levenez.com/unix/).

In the late 1960s, researchers from General Electric, MIT and Bell Labs launched a joint project to develop an
ambitious multi-user, multi-tasking OS for mainframe computers known as MULTICS (Multiplexed
Information and Computing System). MULTICS failed, but it did inspire Ken Thompson, who was a
researcher at Bell Labs, to have a go at writing a simpler operating system himself. He wrote a simpler version
of MULTICS on a PDP7 in assembler and called his attempt UNICS (Uniplexed Information and Computing
System). Because memory and CPU power were at a premium in those days, UNICS (eventually shortened to
UNIX) used short commands to minimize the space needed to store them and the time needed to decode them -
hence the tradition of short UNIX commands we use today, e.g. ls, cp, rm, mv etc.

Ken Thompson then teamed up with Dennis Ritchie, the author of the first C compiler in 1973. They rewrote
the UNIX kernel in C - this was a big step forwards in terms of the system's portability - and released the Fifth
Edition of UNIX to universities in 1974. The Seventh Edition, released in 1978, marked a split in UNIX
development into two main branches: SYSV (System 5) and BSD (Berkeley Software Distribution). BSD
arose from the University of California at Berkeley where Ken Thompson spent a sabbatical year. Its
development was continued by students at Berkeley and other research institutions. SYSV was developed by

3

AT&T and other commercial companies. UNIX flavours based on SYSV have traditionally been more
conservative, but better supported than BSD-based flavours.

The latest incarnations of SYSV (SVR4 or System 5 Release 4) and BSD Unix are actually very similar.
Some minor differences are to be found in file system structure, system utility names and options and system
call libraries.

Linux is a free open source UNIX OS for PCs that was originally developed in 1991 by Linus Torvalds, a
Finnish undergraduate student. Linux is neither pure SYSV or pure BSD. Instead, incorporates some features
from each (e.g. SYSV-style startup files but BSD-style file system layout) and aims to conform with a set of
IEEE standards called POSIX (Portable Operating System Interface). To maximise code portability, it
typically supports SYSV, BSD and POSIX system calls.

The open source nature of Linux means that the source code for the Linux kernel is freely available so that
anyone can add features and correct deficiencies. This approach has been very successful and what started as
one person's project has now turned into a collaboration of hundreds of volunteer developers from around the
globe. The open source approach has not just successfully been applied to kernel code, but also to application
programs for Linux.

As Linux has become more popular, several different development streams or distributions have emerged, e.g.
Redhat, Slackware, Mandrake, Debian, and Caldera. A distribution comprises a prepackaged kernel, system
utilities, GUI interfaces and application programs.

1.3. Architecture of the Linux Operating System

Linux has all of the components of a typical OS:

Kernel
The Linux kernel includes device driver support for a large number of PC hardware devices (graphics cards,
network cards, hard disks etc.), advanced processor and memory management features, and support for many
different types of filesystems (including DOS floppies and the ISO9660 standard for CDROMs). In terms of
the services that it provides to application programs and system utilities, the kernel implements most BSD and
SYSV system calls, as well as the system calls described in the POSIX.1 specification.

The kernel (in raw binary form that is loaded directly into memory at system startup time) is typically found in
the file /boot/vmlinuz, while the source files can usually be found in /usr/src/linux.

Shells and GUIs
Linux supports two forms of command input: through textual command line shells similar to those found on
most UNIX systems (e.g. sh - the Bourne shell, bash - the Bourne again shell and csh - the C shell) and
through graphical interfaces (GUIs) such as the KDE and GNOME window managers. If you are connecting
remotely to a server your access will typically be through a command line shell.

System Utilities
Virtually every system utility that you would expect to find on standard implementations of UNIX (including
every system utility described in the POSIX.2 specification) has been ported to Linux. This includes
commands such as ls, cp, grep, awk, sed, bc, wc, more, and so on. These system utilities
are designed to be powerful tools that do a single task extremely well (e.g. grep finds text inside files while
wc counts the number of words, lines and bytes inside a file). Users can often solve problems by
interconnecting these tools instead of writing a large monolithic application program.

Like other UNIX flavours, Linux's system utilities also include server programs called daemons which provide
remote network and administration services (e.g. telnetd and sshd provide remote login facilities, lpd
provides printing services, httpd serves web pages, crond runs regular system administration tasks
automatically). A daemon (probably derived from the Latin word which refers to a beneficient spirit who

4

watches over someone, or perhaps short for "Disk And Execution MONitor") is usually spawned
automatically at system startup and spends most of its time lying dormant (lurking?) waiting for some event to
occur.

Application programs
Linux distributions typically come with several useful application programs as standard. Examples include the
emacs editor, xv (an image viewer), gcc (a C compiler), g++ (a C++ compiler), xfig (a drawing
package), latex (a powerful typesetting language) and soffice (StarOffice, which is an MS-Office style
clone that can read and write Word, Excel and PowerPoint files).

1.4. Logging into (and out of) UNIX Systems

When you connect to a UNIX computer remotely (using telnet) or when you log in locally using a text-only
terminal, you will see the prompt:

login:

At this prompt, type in your usename and press the enter/return/ key. Remember that UNIX is case
sensitive (i.e. Will, WILL and will are all different logins). You should then be prompted for your password:

login: will
password:

Type your password in at the prompt and press the enter/return/ key. Note that your password will not be
displayed on the screen as you type it in.

If you mistype your username or password you will get an appropriate message from the computer and you
will be presented with the login: prompt again. Otherwise you should be presented with a shell prompt
which looks something like this:

$

To log out of a text-based UNIX shell, type "exit" at the shell prompt (or if that doesn't work try "logout"; if
that doesn't work press ctrl-d).

1.5. Changing your password

One of the things you should do when you log in for the first time is to change your password.

The UNIX command to change your password is passwd:

$ passwd

The system will prompt you for your old password, then for your new password. To eliminate any
possible typing errors you have made in your new password, it will ask you to reconfirm your new
password.

Remember the following points when choosing your password:

(1) Avoid characters which might not appear on all keyboards, e.g. '£'.
(2) The weakest link in most computer security is user passwords so keep your password a secret, don't write
it down and don't tell it to anyone else. Also avoid dictionary words or words related to your personal details
(e.g. your boyfriend or girlfriend's name or your login).

5

(3) Make it at least 7 or 8 characters long and try to use a mix of letters, numbers and punctuation.

1.6. General format of UNIX Commands

A UNIX command line consists of the name of a UNIX command (actually the "command" is the name of a
built-in shell command, a system utility or an application program) followed by its "arguments" (options and
the target filenames and/or expressions). The general syntax for a UNIX command is

$ command -options targets

Here command can be though of as a verb, options as an adverb and targets as the direct objects of
the verb. In the case that the user wishes to specify several options, these need not always be listed separately
(the options can sometimes be listed altogether after a single dash).

2.1. The UNIX Filesystem

The UNIX operating system is built around the concept of a filesystem which is used to store all of the
information that constitutes the long-term state of the system. This state includes the operating system kernel
itself, the executable files for the commands supported by the operating system, configuration information,
temporary workfiles, user data, and various special files that are used to give controlled access to system
hardware and operating system functions.

Every item stored in a UNIX filesystem belongs to one of four types:

Ordinary files
Ordinary files can contain text, data, or program information. Files cannot contain other files or directories.
Unlike other operating systems, UNIX filenames are not broken into a name part and an extension part
(although extensions are still frequently used as a means to classify files). Instead they can contain any
keyboard character except for '/' and be up to 256 characters long (note however that characters such as *,?,#
and & have special meaning in most shells and should not therefore be used in filenames). Putting spaces in
filenames also makes them difficult to manipulate - rather use the underscore '_'.

Directories
Directories are containers or folders that hold files, and other directories.

Devices
To provide applications with easy access to hardware devices, UNIX allows them to be used in much the same
way as ordinary files. There are two types of devices in UNIX - block-oriented devices which transfer data in
blocks (e.g. hard disks) and character-oriented devices that transfer data on a byte-by-byte basis (e.g. modems
and dumb terminals).

Links
A link is a pointer to another file. There are two types of links - a hard link to a file is indistinguishable from
the file itself. A soft link (or symbolic link) provides an indirect pointer or shortcut to a file. A soft link is
implemented as a directory file entry containing a pathname.

2.2. Typical UNIX Directory Structure

The UNIX filesystem is laid out as a hierarchical tree structure which is anchored at a special top-level
directory known as the root (designated by a slash '/'). Because of the tree structure, a directory can have many
child directories, but only one parent directory. Fig. 2.1 illustrates this layout.

6

Fig. 2.1: Part of a typical UNIX filesystem tree

To specify a location in the directory hierarchy, we must specify a path through the tree. The path to a location
can be defined by an absolute path from the root /, or as a relative path from the current working directory. To
specify a path, each directory along the route from the source to the destination must be included in the path,
with each directory in the sequence being separated by a slash. To help with the specification of relative paths,
UNIX provides the shorthand "." for the current directory and ".." for the parent directory. For example, the
absolute path to the directory "play" is /home/will/play, while the relative path to this directory from
"zeb" is ../will/play.

Fig. 2.2 shows some typical directories you will find on UNIX systems and briefly describes their contents.
Note that these although these subdirectories appear as part of a seamless logical filesystem, they do not need
be present on the same hard disk device; some may even be located on a remote machine and accessed across a
network.

Directory Typical Contents

/ The "root" directory

/bin Essential low-level system utilities

/usr/bin Higher-level system utilities and application programs

/sbin Superuser system utilities (for performing system
administration tasks)

/lib
Program libraries (collections of system calls that
can be included in programs by a compiler) for low-
level system utilities

/usr/lib Program libraries for higher-level user programs

/tmp Temporary file storage space (can be used by any user)

/home or / User home directories containing personal file space

7

homes for each user. Each directory is named after the login
of the user.

/etc UNIX system configuration and information files

/dev Hardware devices

/proc
A pseudo-filesystem which is used as an interface to
the kernel. Includes a sub-directory for each active
program (or process).

Fig. 2.2: Typical UNIX directories

When you log into UNIX, your current working directory is your user home directory. You can refer to your
home directory at any time as "~" and the home directory of other users as "~<login>". So ~will/play
is another way for user jane to specify an absolute path to the directory /homes/will/play. User
will may refer to the directory as ~/play.

2.3. Directory and File Handling Commands

This section describes some of the more important directory and file handling commands.

pwd (print [current] working directory)

pwd displays the full absolute path to the your current location in the filesystem. So

$ pwd
/usr/bin

implies that /usr/bin is the current working directory.

ls (list directory)

ls lists the contents of a directory. If no target directory is given, then the contents of the current working
directory are displayed. So, if the current working directory is /,

$ ls
bin dev home mnt share usr var
boot etc lib proc sbin tmp vol

Actually, ls doesn't show you all the entries in a directory - files and directories that begin with a dot (.) are
hidden (this includes the directories '.' and '..' which are always present). The reason for this is that files that
begin with a . usually contain important configuration information and should not be changed under normal
circumstances. If you want to see all files, ls supports the -a option:

$ ls -a

Even this listing is not that helpful - there are no hints to properties such as the size, type and ownership of
files, just their names. To see more detailed information, use the -l option (long listing), which can be
combined with the -a option as follows:

$ ls -a -l
 (or, equivalently,)

8

$ ls -al

Each line of the output looks like this:

where:

(1) type is a single character which is either 'd' (directory), '-' (ordinary file), 'l' (symbolic link), 'b' (block-
oriented device) or 'c' (character-oriented device).

(2) permissions is a set of characters describing access rights. There are 9 permission characters, describing 3
access types given to 3 user categories. The three access types are read ('r'), write ('w') and execute ('x'), and
the three users categories are the user who owns the file, users in the group that the file belongs to and other
users (the general public). An 'r', 'w' or 'x' character means the corresponding permission is present; a '-' means
it is absent.

(3) links refers to the number of filesystem links pointing to the file/directory (see the discussion on hard/soft
links in the next section).

(4) owner is usually the user who created the file or directory.

(5) group denotes a collection of users who are allowed to access the file according to the group access rights
specified in the permissions field.

(6) size is the length of a file, or the number of bytes used by the operating system to store the list of files in a
directory.

(7) date is the date when the file or directory was last modified (written to). The -u option display the time
when the file was last accessed (read).

(8) name is the name of the file or directory.

ls supports more options. To find out what they are, type:

$ man ls

man is the online UNIX user manual, and you can use it to get help with commands and find out about what
options are supported. It has quite a terse style which is often not that helpful, so some users prefer to the use
the (non-standard) info utility if it is installed:

$ info ls

cd (change [current working] directory)

$ cd path

9

changes your current working directory to path (which can be an absolute or a relative path). One of the most
common relative paths to use is '..' (i.e. the parent directory of the current directory).

Used without any target directory

$ cd

resets your current working directory to your home directory (useful if you get lost). If you change into a
directory and you subsequently want to return to your original directory, use

$ cd -

mkdir (make directory)

$ mkdir directory

creates a subdirectory called directory in the current working directory. You can only create subdirectories in a
directory if you have write permission on that directory.

rmdir (remove directory)

$ rmdir directory

removes the subdirectory directory from the current working directory. You can only remove subdirectories if
they are completely empty (i.e. of all entries besides the '.' and '..' directories).

cp (copy)

cp is used to make copies of files or entire directories. To copy files, use:

$ cp source-file(s) destination

where source-file(s) and destination specify the source and destination of the copy respectively. The behaviour
of cp depends on whether the destination is a file or a directory. If the destination is a file, only one source file
is allowed and cp makes a new file called destination that has the same contents as the source file. If the
destination is a directory, many source files can be specified, each of which will be copied into the destination
directory. Section 2.6 will discuss efficient specification of source files using wildcard characters.

To copy entire directories (including their contents), use a recursive copy:

$ cp -rd source-directories destination-directory

mv (move/rename)

mv is used to rename files/directories and/or move them from one directory into another. Exactly one source
and one destination must be specified:

$ mv source destination

If destination is an existing directory, the new name for source (whether it be a file or a directory) will be
destination/source. If source and destination are both files, source is renamed destination. N.B.: if destination
is an existing file it will be destroyed and overwritten by source (you can use the -i option if you would like

10

to be asked for confirmation before a file is overwritten in this way).

rm (remove/delete)

$ rm target-file(s)

removes the specified files. Unlike other operating systems, it is almost impossible to recover a deleted file
unless you have a backup (there is no recycle bin!) so use this command with care. If you would like to be
asked before files are deleted, use the -i option:

$ rm -i myfile
rm: remove 'myfile'?

rm can also be used to delete directories (along with all of their contents, including any subdirectories they
contain). To do this, use the -r option. To avoid rm from asking any questions or giving errors (e.g. if the file
doesn't exist) you used the -f (force) option. Extreme care needs to be taken when using this option -
consider what would happen if a system administrator was trying to delete user will's home directory and
accidentally typed:

$ rm -rf / home/will

(instead of rm -rf /home/will).

cat (catenate/type)

$ cat target-file(s)

displays the contents of target-file(s) on the screen, one after the other. You can also use it to create files from
keyboard input as follows (> is the output redirection operator, which will be discussed in the next chapter):

$ cat > hello.txt
hello world!
[ctrl-d]
$ ls hello.txt
hello.txt
$ cat hello.txt
hello world!
$

more and less (catenate with pause)

$ more target-file(s)

displays the contents of target-file(s) on the screen, pausing at the end of each screenful and asking the user to
press a key (useful for long files). It also incorporates a searching facility (press '/' and then type a phrase that
you want to look for).

You can also use more to break up the output of commands that produce more than one screenful of output
as follows (| is the pipe operator, which will be discussed in the next chapter):

$ ls -l | more

11

less is just like more, except that has a few extra features (such as allowing users to scroll backwards and
forwards through the displayed file). less not a standard utility, however and may not be present on all
UNIX systems.

2.4. Making Hard and Soft (Symbolic) Links

Direct (hard) and indirect (soft or symbolic) links from one file or directory to another can be created using the
ln command.

$ ln filename linkname

creates another directory entry for filename called linkname (i.e. linkname is a hard link). Both directory
entries appear identical (and both now have a link count of 2). If either filename or linkname is modified, the
change will be reflected in the other file (since they are in fact just two different directory entries pointing to
the same file).

$ ln -s filename linkname

creates a shortcut called linkname (i.e. linkname is a soft link). The shortcut appears as an entry with a special
type ('l'):

$ ln -s hello.txt bye.txt
$ ls -l bye.txt
lrwxrwxrwx 1 will finance 13 bye.txt -> hello.txt
$

The link count of the source file remains unaffected. Notice that the permission bits on a symbolic link are not
used (always appearing as rwxrwxrwx). Instead the permissions on the link are determined by the
permissions on the target (hello.txt in this case).

Note that you can create a symbolic link to a file that doesn't exist, but not a hard link. Another difference
between the two is that you can create symbolic links across different physical disk devices or partitions, but
hard links are restricted to the same disk partition. Finally, most current UNIX implementations do not allow
hard links to point to directories.

2.5. Specifying multiple filenames

Multiple filenames can be specified using special pattern-matching characters. The rules are:

- '?' matches any single character in that position in the filename.
- '*' matches zero or more characters in the filename. A '*' on its own will match all files. '*.*' matches all
files with containing a '.'.
- Characters enclosed in square brackets ('[' and ']') will match any filename that has one of those characters in
that position.
- A list of comma separated strings enclosed in curly braces ("{" and "}") will be expanded as a Cartesian
product with the surrounding characters.

For example:

??? matches all three-character filenames.
?ell? matches any five-character filenames with 'ell' in the middle.
he* matches any filename beginning with 'he'.
[m-z]*[a-l] matches any filename that begins with a letter from 'm' to 'z' and ends in a letter from 'a' to

12

'l'.
{/usr,}{/bin,/lib}/file expands to /usr/bin/file /usr/lib/file /bin/file and
/lib/file.

Note that the UNIX shell performs these expansions (including any filename matching) on a command's
arguments before the command is executed.

2.6. Quotes

As we have seen certain special characters (e.g. '*', '-','{' etc.) are interpreted in a special way by the shell. In
order to pass arguments that use these characters to commands directly (i.e. without filename expansion etc.),
we need to use special quoting characters. There are three levels of quoting that you can try:

- Try insert a '\' in front of the special character.
- Use double quotes (") around arguments to prevent most expansions.
- Use single forward quotes (') around arguments to prevent all expansions.

There is a fourth type of quoting in UNIX. Single backward quotes (`) are used to pass the output of some
command as an input argument to another. For example:

$ hostname
rose
$ echo this machine is called `hostname`
this machine is called rose

3.1. File and Directory Permissions

Permission File Directory

read
User can look at
the contents of
the file

User can list the files in the
directory

write
User can modify
the contents of
the file

User can create new files and remove
existing files in the directory

execute
User can use the
filename as a
UNIX command

User can change into the directory, but
cannot list the files unless (s)he has
read permission. User can read files if
(s)he has read permission on them.

Fig 3.1: Interpretation of permissions for files and directories

As we have seen in the previous chapter, every file or directory on a UNIX system has three types of
permissions, describing what operations can be performed on it by various categories of users. The
permissions are read (r), write (w) and execute (x), and the three categories of users are user/owner (u), group
(g) and others (o). Because files and directories are different entities, the interpretation of the permissions
assigned to each differs slightly, as shown in Fig 3.1.

File and directory permissions can only be modified by their owners, or by the superuser (root), by using the
chmod system utility.

13

chmod (change [file or directory] mode)

$ chmod options files

chmod accepts options in two forms. Firstly, permissions may be specified as a sequence of 3 octal digits
(octal is like decimal except that the digit range is 0 to 7 instead of 0 to 9). Each octal digit represents the
access permissions for the user/owner, group and others respectively. The mappings of permissions onto their
corresponding octal digits is as follows:

--- 0

--x 1

-w- 2

-wx 3

r-- 4

r-x 5

rw- 6

rwx 7

For example the command:

$ chmod 600 private.txt

sets the permissions on private.txt to rw------- (i.e. only the owner can read and write to the file).

Permissions may be specified symbolically, using the symbols u (user), g (group), o (other), a (all), r (read),
w (write), x (execute), + (add permission), - (take away permission) and = (assign permission). For example,
the command:

$ chmod ug=rw,o-rw,a-x *.txt

sets the permissions on all files ending in *.txt to rw-rw---- (i.e. the owner and users in the file's group
can read and write to the file, while the general public do not have any sort of access).

chmod also supports a -R option which can be used to recursively modify file permissions, e.g.

$ chmod -R go+r play

will grant group and other read rights to the directory play and all of the files and directories within play.

chgrp (change group)

$ chgrp group files

can be used to change the group that a file or directory belongs to. It also supports a -R option.

3.2. Inspecting File Content

Besides cat there are several other useful utilities for investigating the contents of files:

14

file filename(s)

file analyzes a file's contents for you and reports a high-level description of what type of file it appears to
be:

$ file myprog.c letter.txt webpage.html
myprog.c: C program text
letter.txt: English text
webpage.html: HTML document text

file can identify a wide range of files but sometimes gets understandably confused (e.g. when trying to
automatically detect the difference between C++ and Java code).

head, tail filename

head and tail display the first and last few lines in a file respectively. You can specify the number of lines
as an option, e.g.

$ tail -20 messages.txt
$ head -5 messages.txt

tail includes a useful -f option that can be used to continuously monitor the last few lines of a (possibly
changing) file. This can be used to monitor log files, for example:

$ tail -f /var/log/messages

continuously outputs the latest additions to the system log file.

objdump options binaryfile

objdump can be used to disassemble binary files - that is it can show the machine language instructions
which make up compiled application programs and system utilities.

od options filename (octal dump)

od can be used to displays the contents of a binary or text file in a variety of formats, e.g.

$ cat hello.txt
hello world
$ od -c hello.txt
0000000 h e l l o w o r l d \n
0000014
$ od -x hello.txt
0000000 6865 6c6c 6f20 776f 726c 640a
0000014

There are also several other useful content inspectors that are non-standard (in terms of availability on UNIX
systems) but are nevertheless in widespread use. They are summarised in Fig. 3.2.

File type Typical extension Content viewer

Portable Document Format .pdf acroread

15

Postscript Document .ps ghostview

DVI Document .dvi xdvi

JPEG Image .jpg xv

GIF Image .gif xv

MPEG movie .mpg mpeg_play

WAV sound file .wav realplayer

HTML document .html netscape

Fig 3.2: Other file types and appropriate content viewers.

3.3. Finding Files

There are at least three ways to find files when you don't know their exact location:

find

If you have a rough idea of the directory tree the file might be in (or even if you don't and you're prepared to
wait a while) you can use find:

$ find directory -name targetfile -print

find will look for a file called targetfile in any part of the directory tree rooted at directory. targetfile can
include wildcard characters. For example:

$ find /home -name "*.txt" -print 2>/dev/null

will search all user directories for any file ending in ".txt" and output any matching files (with a full
absolute or relative path). Here the quotes (") are necessary to avoid filename expansion, while the 2>/dev/
null suppresses error messages (arising from errors such as not being able to read the contents of
directories for which the user does not have the right permissions).

find can in fact do a lot more than just find files by name. It can find files by type (e.g. -type f for files,
-type d for directories), by permissions (e.g. -perm o=r for all files and directories that can be read by
others), by size (-size) etc. You can also execute commands on the files you find. For example,

$ find . -name "*.txt" -exec wc -l '{}' ';'

counts the number of lines in every text file in and below the current directory. The '{}' is replaced by the
name of each file found and the ';' ends the -exec clause.

For more information about find and its abilities, use man find and/or info find.

which (sometimes also called whence) command

If you can execute an application program or system utility by typing its name at the shell prompt, you can use
which to find out where it is stored on disk. For example:

$ which ls

16

/bin/ls

locate string

find can take a long time to execute if you are searching a large filespace (e.g. searching from /
downwards). The locate command provides a much faster way of locating all files whose names match a
particular search string. For example:

$ locate ".txt"

will find all filenames in the filesystem that contain ".txt" anywhere in their full paths.

One disadvantage of locate is it stores all filenames on the system in an index that is usually updated only
once a day. This means locate will not find files that have been created very recently. It may also report
filenames as being present even though the file has just been deleted. Unlike find, locate cannot track
down files on the basis of their permissions, size and so on.

3.4. Finding Text in Files

grep (General Regular Expression Print)

$ grep options pattern files

grep searches the named files (or standard input if no files are named) for lines that match a given pattern.
The default behaviour of grep is to print out the matching lines. For example:

$ grep hello *.txt

searches all text files in the current directory for lines containing "hello". Some of the more useful options that
grep provides are:
-c (print a count of the number of lines that match), -i (ignore case), -v (print out the lines that don't match
the pattern) and -n (printout the line number before printing the matching line). So

$ grep -vi hello *.txt

searches all text files in the current directory for lines that do not contain any form of the word hello (e.g.
Hello, HELLO, or hELlO).

If you want to search all files in an entire directory tree for a particular pattern, you can combine grep with
find using backward single quotes to pass the output from find into grep. So

$ grep hello `find . -name "*.txt" -print`

will search all text files in the directory tree rooted at the current directory for lines containing the word
"hello".

The patterns that grep uses are actually a special type of pattern known as regular expressions. Just like
arithemetic expressions, regular expressions are made up of basic subexpressions combined by operators.

The most fundamental expression is a regular expression that matches a single character. Most characters,
including all letters and digits, are regular expressions that match themselves. Any other character with special
meaning may be quoted by preceding it with a backslash (\). A list of characters enclosed by '[' and ']'

17

matches any single character in that list; if the first character of the list is the caret `^', then it matches any
character not in the list. A range of characters can be specified using a dash (-) between the first and last
items in the list. So [0-9] matches any digit and [^a-z] matches any character that is not a digit.

The caret `^' and the dollar sign `$' are special characters that match the beginning and end of a line
respectively. The dot '.' matches any character. So

$ grep ^..[l-z]$ hello.txt

matches any line in hello.txt that contains a three character sequence that ends with a lowercase letter
from l to z.

egrep (extended grep) is a variant of grep that supports more sophisticated regular expressions. Here two
regular expressions may be joined by the operator `|'; the resulting regular expression matches any string
matching either subexpression. Brackets '(' and ')' may be used for grouping regular expressions. In addition,
a regular expression may be followed by one of several repetition operators:

`?' means the preceding item is optional (matched at most once).
`*' means the preceding item will be matched zero or more times.
`+' means the preceding item will be matched one or more times.
`{N}' means the preceding item is matched exactly N times.
`{N,}' means the preceding item is matched N or more times.
`{N,M}' means the preceding item is matched at least N times, but not more than M times.

For example, if egrep was given the regular expression

'(^[0-9]{1,5}[a-zA-Z]+$)|none'

it would match any line that either begins with a number up to five digits long, followed by a sequence of one
or more letters or spaces, or contains the word none.

You can read more about regular expressions on the grep and egrep manual pages.

Note that UNIX systems also usually support another grep variant called fgrep (fixed grep) which simply
looks for a fixed string inside a file (but this facility is largely redundant).

3.5. Sorting Files

There are two facilities that are useful for sorting files in UNIX:

sort filenames

sort sorts lines contained in a group of files alphabetically (or if the -n option is specified) numerically. The
sorted output is displayed on the screen, and may be stored in another file by redirecting the output. So

$ sort input1.txt input2.txt > output.txt

outputs the sorted concentenation of files input1.txt and input2.txt to the file output.txt.

uniq filename

18

uniq removes duplicate adjacent lines from a file. This facility is most useful when combined with sort:

$ sort input.txt | uniq > output.txt

3.6. File Compression and Backup

UNIX systems usually support a number of utilities for backing up and compressing files. The most useful
are:

tar (tape archiver)

tar backs up entire directories and files onto a tape device or (more commonly) into a single disk file known
as an archive. An archive is a file that contains other files plus information about them, such as their filename,
owner, timestamps, and access permissions. tar does not perform any compression by default.

To create a disk file tar archive, use

$ tar -cvf archivename filenames

where archivename will usually have a .tar extension. Here the c option means create, v means verbose
(output filenames as they are archived), and f means file.To list the contents of a tar archive, use

$ tar -tvf archivename

To restore files from a tar archive, use

$ tar -xvf archivename

cpio

cpio is another facility for creating and reading archives. Unlike tar, cpio doesn't automatically archive
the contents of directories, so it's common to combine cpio with find when creating an archive:

$ find . -print -depth | cpio -ov -Htar > archivename

This will take all the files in the current directory and the
directories below and place them in an archive called archivename.The -depth option controls the order in
which the filenames are produced and is recommended to prevent problems with directory permissions when
doing a restore.The -o option creates the archive, the -v option prints the names of the files archived as they
are added and the -H option specifies an archive format type (in this case it creates a tar archive). Another
common archive type is crc, a portable format with a checksum for error control.

To list the contents of a cpio archive, use

$ cpio -tv < archivename

To restore files, use:

$ cpio -idv < archivename

Here the -d option will create directories as necessary. To force cpio to extract files on top of files of the

19

same name that already exist (and have the same or later modification time), use the -u option.

compress, gzip

compress and gzip are utilities for compressing and decompressing individual files (which may be or may
not be archive files). To compress files, use:

$ compress filename
or
$ gzip filename

In each case, filename will be deleted and replaced by a compressed file called filename.Z or filename.gz. To
reverse the compression process, use:

$ compress -d filename
or
$ gzip -d filename

3.7. Handling Removable Media

UNIX supports tools for accessing removable media such as CDROMs and floppy disks.

mount, umount

The mount command serves to attach the filesystem found on some device to the filesystem tree.
Conversely, the umount command will detach it again (it is very important to remember to do this
when removing the floppy or CDROM). The file /etc/fstab contains a list of devices and the
points at which they will be attached to the main filesystem:

$ cat /etc/fstab
/dev/fd0 /mnt/floppy auto rw,user,noauto 0 0
/dev/hdc /mnt/cdrom iso9660 ro,user,noauto 0 0

In this case, the mount point for the floppy drive is /mnt/floppy and the mount point for the
CDROM is /mnt/cdrom. To access a floppy we can use:

$ mount /mnt/floppy
$ cd /mnt/floppy
$ ls (etc...)

To force all changed data to be written back to the floppy and to detach the floppy disk from the
filesystem, we use:

$ umount /mnt/floppy

mtools

If they are installed, the (non-standard) mtools utilities provide a convenient way of accessing DOS-
formatted floppies without having to mount and unmount filesystems. You can use DOS-type commands like
"mdir a:", "mcopy a:*.* .", "mformat a:", etc. (see the mtools manual pages for more
details).

20

3.8. Processes

A process is a program in execution. Every time you invoke a system utility or an application program from a
shell, one or more "child" processes are created by the shell in response to your command. All UNIX processes
are identified by a unique process identifier or PID. An important process that is always present is the init
process. This is the first process to be created when a UNIX system starts up and usually has a PID of 1. All
other processes are said to be "descendants" of init.

3.9. Pipes

The pipe ('|') operator is used to create concurrently executing processes that pass data directly to one
another. It is useful for combining system utilities to perform more complex functions. For example:

$ cat hello.txt | sort | uniq

creates three processes (corresponding to cat, sort and uniq) which execute concurrently. As they
execute, the output of the who process is passed on to the sort process which is in turn passed on to
the uniq process. uniq displays its output on the screen (a sorted list of users with duplicate lines
removed). Similarly:

$ cat hello.txt | grep "dog" | grep -v "cat"

finds all lines in hello.txt that contain the string "dog" but do not contain the string "cat".

3.10. Redirecting Input and Output

The output from programs is usually written to the screen, while their input usually comes from the keyboard
(if no file arguments are given). In technical terms, we say that processes usually write to standard output (the
screen) and take their input from standard input (the keyboard). There is in fact another output channel called
standard error, where processes write their error messages; by default error messages are also sent to the
screen.

To redirect standard output to a file instead of the screen, we use the > operator:

$ echo hello
hello
$ echo hello > output
$ cat output
hello

In this case, the contents of the file output will be destroyed if the file already exists. If instead we want to
append the output of the echo command to the file, we can use the >> operator:

$ echo bye >> output
$ cat output
hello
bye

To capture standard error, prefix the > operator with a 2 (in UNIX the file numbers 0, 1 and 2 are assigned to
standard input, standard output and standard error respectively), e.g.:

$ cat nonexistent 2>errors

21

$ cat errors
cat: nonexistent: No such file or directory
$

You can redirect standard error and standard output to two different files:

$ find . -print 1>errors 2>files

or to the same file:

$ find . -print 1>output 2>output
or
$ find . -print >& output

Standard input can also be redirected using the < operator, so that input is read from a file instead of the
keyboard:

$ cat < output
hello
bye

You can combine input redirection with output redirection, but be careful not to use the same filename in both
places. For example:

$ cat < output > output

will destroy the contents of the file output. This is because the first thing the shell does when it sees the >
operator is to create an empty file ready for the output.

One last point to note is that we can pass standard output to system utilities that require filenames as "-":

$ cat package.tar.gz | gzip -d | tar tvf -

Here the output of the gzip -d command is used as the input file to the tar command.

3.11. Connecting to Remote Machines

telnet machinename

telnet provides an insecure mechanism for logging into remote machines. It is insecure because all data
(including your username and password) is passed in unencrypted format over the network. For this reason,
telnet login access is disabled on most systems and where possible it should be avoided in favour of secure
alternatives such as ssh.

telnet is still a useful utility, however, because, by specifying different port numbers, telnet can be
used to connect to other services offered by remote machines besides remote login (e.g. web pages, email, etc.)
and reveal the mechanisms behind how those services are offered. For example,

$ telnet www.doc.ic.ac.uk 80
Trying 146.169.1.10...
Connected to seagull.doc.ic.ac.uk (146.169.1.10).
Escape character is '^]'.

22

GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Sun, 10 Dec 2000 21:06:34 GMT
Server: Apache/1.3.14 (Unix)
Last-Modified: Tue, 28 Nov 2000 16:09:20 GMT
ETag: "23dcfd-3806-3a23d8b0"
Accept-Ranges: bytes
Content-Length: 14342
Connection: close
Content-Type: text/html

<HTML>
<HEAD>
 <TITLE>Department of Computing, Imperial College, London: Home
Page</TITLE>
</HEAD>
(etc)

Here www.doc.ic.ac.uk is the name of the remote machine (in this case the web server for the
Department of Computing at Imperial College in London). Like most web servers, it offers web page services
on port 80 through the daemon httpd (to see what other services are potentially available on a machine, have
a look at the file /etc/services; and to see what services are actually active, see
/etc/inetd.conf). By entering a valid HTTP GET command (HTTP is the protocol used to serve web
pages) we obtain the top-level home page in HTML format. This is exactly the same process that is used by a
web browser to access web pages.

rlogin, rsh

rlogin and rsh are insecure facilities for logging into remote machines and for executing commands on
remote machines respectively. Along with telnet, they have been superseded by ssh.

ssh machinename (secure shell)

ssh is a secure alternative for remote login and also for executing commands in a remote machine. It is
intended to replace rlogin and rsh, and provide secure encrypted communications between two untrusted
hosts over an insecure network. X11 connections (i.e. graphics) can also be forwarded over the secure channel
(another advantage over telnet, rlogin and rsh). ssh is not a standard system utility, although it is a
de facto standard. It can be obtained from http://www.ssh.org.

ssh clients are also available for Windows machines (e.g. there is a good ssh client called putty).

3.12. Internet related utilities

netscape

netscape is a fully-fledged graphical web browser (like Internet Explorer).

lynx

lynx provides a way to browse the web on a text-only terminal.

23

wget URL

wget provides a way to retrieve files from the web (using the HTTP protocol). wget is non-interactive,
which means it can run in the background, while the user is not logged in (unlike most web browsers). The
content retrieved by wget is stored as raw HTML text (which can be viewed later using a web browser).

Note that netscape, lynx and wget are not standard UNIX system utilities, but are frequently-installed
application packages.

3.13. Printer Control

lpr -Pprintqueue filename

lpr adds a document to a print queue, so that the document is printed when the printer is available. Look at
/etc/printcap to find out what printers are available.

lpq -Pprintqueue

lpq checks the status of the specified print queue. Each job will have an associated job number.

lprm -Pprintqueue jobnumber

lprm removes the given job from the specified print queue.

Note that lpr, lpq and lprm are BSD-style print management utilities. If you are using a strict SYSV
UNIX, you may need to use the SYSV equivalents lp, lpstat and cancel.

3.14. Manual Pages

man

More information is available on most UNIX commands is available via the online manual pages, which are
accessible through the man command. The online documentation is in fact divided into sections. Traditionally,
they are

1 User-level commands
2 System calls
3 Library functions
4 Devices and device drivers
5 File formats
6 Games
7 Various miscellaneous stuff - macro packages etc.
8 System maintenance and operation commands

Sometimes man gives you a manual page from the wrong section. For example, say you were writing a
program and you needed to use the rmdir system call. man rmdir gives you the manual page for the user-
level command rmdir. To force man to look in Section 2 of the manual instead, type man 2 rmdir
(orman -s2 rmdir on some systems).

man can also find manual pages which mention a particular topic. For example, man -k postscript
should produce a list of utilities that can produce and manipulate postscript files.

24

info

info is an interactive, somewhat more friendly and helpful alternative to man. It may not be installed on all
systems, however.

4.1. Introduction to vi

vi (pronounced "vee-eye", short for visual, or perhaps vile) is a display-oriented text editor based on an
underlying line editor called ex. Although beginners usually find vi somewhat awkward to use, it is useful
to learn because it is universally available (being supplied with all UNIX systems). It also uses standard
alphanumeric keys for commands, so it can be used on almost any terminal or workstation without having to
worry about unusual keyboard mappings. System administrators like users to use vi because it uses very few
system resources.

To start vi, enter:

$ vi filename

where filename is the name of the file you want to edit. If the file doesn't exist, vi will create it for you.

4.2. Basic Text Input and Navigation in vi

The main feature that makes vi unique as an editor is its mode-based operation. vi has two modes: command
mode and input mode. In command mode, characters you type perform actions (e.g. moving the cursor, cutting
or copying text, etc.) In input mode, characters you type are inserted or overwrite existing text.

When you begin vi, it is in command mode. To put vi into input mode, press i (insert). You can then type
text which is inserted at the current cursor location; you can correct mistakes with the backspace key as you
type.To get back into command mode, press ESC (the escape key). Another way of inserting text, especially
useful when you are at the end of a line is to press a (append).

In command mode, you are able to move the cursor around your document. h, j, k and l move the cursor
left, down, up and right respectively (if you are lucky the arrow keys may also work). Other useful keys are ^
and $ which move you to the beginning and end of a line respectively. w skips to the beginning of the next
word and b skips back to the beginning of the previous word. To go right to the top of the document, press 1
and then G. To go the bottom of the document, press G. To skip forward a page, press ^F, and to go back a
page, press ^B. To go to a particular line number, type the line number and press G, e.g. 55G takes you to line
55.

To delete text, move the cursor over the first character of the group you want to delete and make sure you are
in command mode. Press x to delete the current character, dw to delete the next word, d4w to delete the next 4
words, dd to delete the next line, 4dd to delete the next 4 lines, d$ to delete to the end of the line or even dG
to delete to the end of the document. If you accidentally delete too much, pressing u will undo the last change.

Occasionally you will want to join two lines together. Press J to do this (trying to press backspace on the
beginning of the second line does not have the intuitive effect!).

4.3. Moving and copying text in vi

vi uses buffers to store text that is deleted. There are nine numbered buffers (1-9) as well as the undo buffer.

25

Usually buffer 1 contains the most recent deletion, buffer 2 the next recent, etc.

To cut and paste in vi, delete the text (using e.g. 5dd to delete 5 lines). Then move to the line where you
want the text to appear and press p. If you delete something else before you paste, you can still retrieve the
delete text by pasting the contents of the delete buffers. You can do this by typing "1p, "2p, etc.

To copy and paste, "yank" the text (using e.g. 5yy to copy 5 lines). Then move to the line where you want the
text to appear and press p.

4.4. Searching and Replacing Text in vi

In command mode, you can search for text by specifying regular expressions. To search forward, type / and
then a regular expression and press . To search backwards, begin with a ? instead of a /. To find the next
text that matches your regular expression press n.

To search and replace all occurences of pattern1 with pattern2, type :%s/pattern1/pattern2/g . To be
asked to confirm each replacement, add a c to this substitution command. Instead of the % you can also give a
range of lines (e.g. 1,17) over which you want the substitution to apply.

4.5. Other Useful vi Commands

Programmers might like the :set number command which displays line numbers (:set nonumber
turns them off).

To save a file, type :w . To save and quit, type :wq or press ZZ. To force a quit without saving type
:q! .

To start editing another file, type :e filename .

To execute shell commands from within vi, and then return to vi afterwards, type :!shellcommand . You
can use the letter % as a substitute for the name of the file that you are editing (so :!echo % prints the
name of the current file).

. repeats the last command.

4.6. Quick Reference to vi

Inserting and typing text:
i insert text (and enter input mode)
$a append text (to end of line)
ESC re-enter command mode
J join lines

Cursor movement:
h left
j down
k up
l right
^ beginning of line
$ end of line
1 G top of document

26

G end of document
<n> G go to line <n>
^F page forward
^B page backward
w word forwards
b word backwards

Deleting and moving text:
Backspace delete character before cursor
 (only works in insert mode)
x delete character under cursor
dw delete word
dd delete line (restore with p or P)
<n> dd delete n lines
d$ delete to end of line
dG delete to end of file
yy yank/copy line (restore with p or P)
<n> yy yank/copy <n> lines

Search and replace:
%s/<search string>/<replace string>/g

Miscellaneous:
u undo
:w save file
:wq save file and quit
ZZ save file and quit
:q! quit without saving

5.1. The Superuser root

The superuser is a privileged user who has unrestricted access to all commands and files on a system
regardless of their permissions. The superuser's login is usually root. Access to the root account is restricted
by a password (the root password). Because the root account has huge potential for destruction, the root
password should be chosen carefully, only given to those who need it, and changed regularly.

One way to become root is to log in as usual using the username root and the root password (usually
security measures are in place so that this is only possible if you are using a "secure" console and not
connecting over a network). Using root as your default login in this way is not recommended, however,
because normal safeguards that apply to other user accounts do not apply to root. Consequently using root
for mundane tasks often results in a memory lapse or misplaced keystrokes having catastrophic effects (e.g.
forgetting for a moment which directory you are in and accidentally deleting another user's files, or
accidentally typing "rm -rf * .txt" instead of "rm -rf *.txt").

A better way to become root is to use the su utility. su (switch user) lets you become another user (at least as
far as the computer is concerned). If you don't specify the name of the user you wish to become, the system
will assume you want to become root. Using su does not usually change your current directory, unless you
specify a "-" option which will run the target user's startup scripts and change into their home directory
(provided you can supply the right password of course). So:

$ su -

27

Password: xxxxxxxx

Note that the root account often displays a different prompt (usually a #). To return to your old self, simply
type "exit" at the shell prompt.

You should avoid leaving a root window open while you are not at your machine. Consider this paragraph
from a humorous 1986 Computer Language article by Alan Filipski:

"The prudent administrator should be aware of common techniques used to breach UNIX security. The most
widely known and practised attack on the security of the UNIX brand operating system is elegant in its
simplicity. The perpetrator simply hangs around the system console until the operator leaves to get a drink or
go to the bathroom. The intruder lunges for the console and types rm -rf / before anyone can pry his or
her hands off the keyboard. Amateur efforts are characterised by typing in things such as ls or pwd. A
skilled UNIX brand operating system security expert would laugh at such attempts."

5.2. Shutdown and System Startup

Shutdown: shutdown, halt, reboot (in /sbin)

/sbin/shutdown allows a UNIX system to shut down gracefully and securely. All logged-in users are
notified that the system is going down, and new logins are blocked. It is possible to shut the system down
immediately or after a specified delay and to specify what should happen after the system has been shut down:

/sbin/shutdown -r now (shut down now and reboot)
/sbin/shutdown -h +5 (shut down in 5 minutes & halt)
/sbin/shutdown -k 17:00 (fake a shutdown at 5pm)

halt and reboot are equivalent to shutdown -h and shutdown -r respectively.

If you have to shut a system down extremely urgently or for some reason cannot use shutdown, it is at least
a good idea to first run the command:

sync

which forces the state of the file system to be brought up to date.

System startup:

At system startup, the operating system performs various low-level tasks, such as initialising the memory
system, loading up device drivers to communicate with hardware devices, mounting filesystems and creating
the init process (the parent of all processes). init's primary responsibility is to start up the system
services as specified in /etc/inittab. Typically these services include gettys (i.e. virtual terminals where
users can login), and the scripts in the directory /etc/rc.d/init.d which usually spawn high-level
daemons such as httpd (the web server). On most UNIX systems you can type dmesg to see system startup
messages, or look in /var/log/messages.

If a mounted filesystem is not "clean" (e.g. the machine was turned off without shutting down properly), a
system utility fsck is automatically run to repair it. Automatic running can only fix certain errors, however,
and you may have to run it manually:

fsck filesys

28

where filesys is the name of a device (e.g. /dev/hda1) or a mount point (like /). "Lost" files recovered
during this process end up in the lost+found directory. Some more modern filesystems called "journaling"
file systems don't require fsck, since they keep extensive logs of filesystem events and are able to recover in
a similar way to a transactional database.

5.3. Shells and Shell Scripts

A shell is a program which reads and executes commands for the user. Shells also usually provide features
such job control, input and output redirection and a command language for writing shell scripts. A shell script
is simply an ordinary text file containing a series of commands in a shell command language (just like a "batch
file" under MS-DOS).

There are many different shells available on UNIX systems (e.g. sh, bash, csh, ksh, tcsh etc.), and they
each support a different command language. Here we will discuss the command language for the Bourne shell
sh since it is available on almost all UNIX systems (and is also supported under bash and ksh).

5.4. Shell Variables and Environment

A shell lets you define variables (like most programming languages). A variable is a piece of data that is given
a name. Once you have assigned a value to a variable, you access its value by prepending a $ to the name:

$ bob='hello world'
$ echo $bob
hello world
$

Variables created within a shell are local to that shell, so only that shell can access them. The set command
will show you a list of all variables currently defined in a shell. If you wish a variable to be accessible to
commands outside the shell, you can export it into the environment:

$ export bob

(under csh you used setenv). The environment is the set of variables that are made available to commands
(including shells) when they are executed. UNIX commands and programs can read the values of environment
variables, and adjust their behaviour accordingly. For example, the environment variable PAGER is used by
the man command (and others) to see what command should be used to display multiple pages. If you say:

$ export PAGER=cat

and then try the man command (say man pwd), the page will go flying past without stopping. If you now
say:

$ export PAGER=more

normal service should be resumed (since now more will be used to display the pages one at a time). Another
environment variable that is commonly used is the EDITOR variable which specifies the default editor to use
(so you can set this to vi or emacs or which ever other editor you prefer). To find out which environment
variables are used by a particular command, consult the man pages for that command.

Another interesting environment variable is PS1, the main shell prompt string which you can use to create
your own custom prompt. For example:

29

$ export PS1="(\h) \w> "
(lumberjack) ~>

The shell often incorporates efficient mechanisms for specifying common parts of the shell prompt (e.g. in
bash you can use \h for the current host, \w for the current working directory, \d for the date, \t for the
time, \u for the current user and so on - see the bash man page).

Another important environment variable is PATH. PATH is a list of directories that the shell uses to locate
executable files for commands. So if the PATH is set to:

/bin:/usr/bin:/usr/local/bin:.

and you typed ls, the shell would look for /bin/ls, /usr/bin/ls etc. Note that the PATH contains'.',
i.e. the current working directory. This allows you to create a shell script or program and run it as a command
from your current directory without having to explicitly say "./filename".

Note that PATH has nothing to with filenames that are specified as arguments to commands (e.g. cat
myfile.txt would only look for ./myfile.txt, not for /bin/myfile.txt, /usr/bin/
myfile.txt etc.)

5.5. Simple Shell Scripting

Consider the following simple shell script, which has been created (using an editor) in a text file called
simple:

#!/bin/sh
this is a comment
echo "The number of arguments is $#"
echo "The arguments are $*"
echo "The first is $1"
echo "My process number is $$"
echo "Enter a number from the keyboard: "
read number
echo "The number you entered was $number"

The shell script begins with the line "#!/bin/sh" . Usually "#" denotes the start of a comment, but #! is a
special combination that tells UNIX to use the Bourne shell (sh) to interpret this script. The #! must be the
first two characters of the script. The arguments passed to the script can be accessed through $1, $2, $3 etc.
$* stands for all the arguments, and $# for the number of arguments. The process number of the shell
executing the script is given by $$. the read number statement assigns keyboard input to the variable
number.

To execute this script, we first have to make the file simple executable:

$ ls -l simple
-rw-r--r-- 1 will finance 175 Dec 13 simple
$ chmod +x simple
$ ls -l simple
-rwxr-xr-x 1 will finance 175 Dec 13 simple
$./simple hello world
The number of arguments is 2
The arguments are hello world

30

The first is hello
My process number is 2669
Enter a number from the keyboard:
5
The number you entered was 5
$

We can use input and output redirection in the normal way with scripts, so:

$ echo 5 | simple hello world

would produce similar output but would not pause to read a number from the keyboard.

31

Notice:

This content is taken from http://www.doc.ic.ac.uk/~wjk/UnixIntro/ and it should be translated to Croatian
and completed into UNIX/Linux textbook.

32

